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Abstract

The Pollution Haven Effect (PHE) predicts that environmental regulation shifts pollution-

intensive production toward less regulated regions. This paper tests the PHE within a

single country by examining the Key Cities Air Pollution Control policy, a city-specific

air quality program in China. Using a synthetic difference-in-differences design to

correct for targeted policy placement, I estimate the policy’s effects on sulfur dioxide

(SO2) emissions and industrial composition in treated and neighboring cities. The

results reveal limited overall emission reductions but clear evidence of spatial reallo-

cation: under half a decade, treated cities shift pollution toward cleaner sectors, while

neighboring cities expand output and capital in pollution-intensive industries, consis-

tent with inter-city pollution leakage. Further analysis shows that this reallocation was

driven largely by provincial governments strategically using state-owned enterprises to

redistribute production, with a secondary role for firm-level product switching. These

findings demonstrate that environmental regulation can generate PHE-type outcomes

in short term, driven by non-market forces, and that well-intentioned policies may re-

shape regional industrial structures in unintended ways.
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1 Motivation and Introduction

Environmental regulations are often designed within political boundaries, but their economic

and environmental consequences rarely stop at the border. As a result, the spatial challenges

of environmental regulation have become increasingly salient in both public discourse and

academic research (Balboni and Shapiro, 2025). A central concern is the Pollution Haven

Effect (PHE), which states that environmental regulation has a negative effect on compet-

itiveness in affected industries, either through shifts in production across regions (Hanna,

2010; Copeland et al., 2022; Chen et al., 2025) or through changes in firms’ location choices

(Henderson, 1995; Harrison et al., 2015). Taking the interaction between environmental pol-

icy and the spatial distribution of economic activity into account is critical in order to design

effective regulation. Improvement in environmental outcomes in one location may come at

the expense of others.

Although the PHE has been widely studied, empirical support for a drastic change in

industrial structure remains limited. Most existing work at cross country level finds limited

support for structural shifts (Copeland et al., 2022; Levinson, 2023; Shapiro and Walker,

2018), with the notable exception of a case study on the battery recycling industry between

the United States and Mexico (Tanaka et al., 2022). One explanation for the absence of

strong evidence is that high cross-country trade costs and productivity differences can offset

the comparative advantage effects created by environmental regulation (Duan et al., 2021).

This paper revisits the PHE in a subnational context, studying how environmental regu-

lation can reshape the industrial composition of cities within the same national economy. I

examine the impact of the Key Cities for Air Pollution Control (KCAPC) program in China

— a national air quality program that targets selected cities — on the performance of pol-

luting and less-polluting sectors in both regulated cities and their neighbors. I aim to answer

the following questions: (i) What is the magnitude of regulation-induced reallocation? (ii)

How do firms respond to / circumvent regulation? (iii) If there is a reallocation, is it driven

by market forces or by non-market (political) mechanisms?
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China offers an ideal setting for such analysis. First, its rapid economic growth has been

accompanied by severe environmental degradation, making it a relevant case for assessing

the effectiveness of environmental regulation. Second, its vast geographic and economic

diversity enables subnational analysis at a scale comparable to cross-country studies, while

avoiding confounding factors such as stark institutional differences. This helps isolate poten-

tial reasons why the change in industrial structure may not emerge at the cross-country level.

Taken together, these features make China a particularly informative context for studying

the mechanisms of the PHE.

I focus on the second round of the KCAPC policy, implemented in 2002 across 66 cities.

An earlier round in 1998 targeted 47 other cities, but data limitations prevent a comparable

analysis. Before implementation in 2001, the surveyed firms in the second round cities

accounted for about 21 % of national manufacturing output and 30 % of manufacturing-

related sulfur dioxide (SO2) emissions, the main focus of this paper.1

The analysis draws on two main firm-level datasets: the Annual Environmental Survey of

Polluting Firms (AESPF) and the Annual Survey of Industrial Firms (ASIF). The AESPF,

conducted by the Ministry of Environment, covers firms responsible for the top 85% of

county-level emissions and reports detailed pollutant data, including SO2 emissions. The

ASIF includes all state-owned firms and non-state-owned firms with annual revenues above

5 million RMB, providing comprehensive financial, operational, and locational data. Merging

these datasets yields a city-sector panel from 1998–2007 for evaluating the KCAPC’s effects

on environmental performance, industrial composition, and economic structure.

To estimate causal impacts, I apply the synthetic difference-in-differences (SDID) method

proposed by Arkhangelsky et al. (2021), which combines synthetic control and difference-

in-differences to address non-random treatment selection and heterogeneous pre-trends. I

1Sulfur Dioxide (SO2) emissions in manufacturing production are mostly through the burning of fossil
fuel that contains sulfur, such as coal or oil, or industrial processes such as extracting metal from ore,
producing petrochemicals, etc. Short-term exposure to SO2 can harm the human respiratory system and
make breathing difficult. Also, SO2 reacts in the air to form particulate matter (PM) that penetrates into
the lungs and causes health problems. For more details, see EPA Sulfur Dioxide Basics.
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examine both aggregate effects and heterogeneous impacts across sectors, distinguishing be-

tween the top-quintile most pollution-intensive industries (ranked by SO2 intensity, hereafter,

”polluting sectors”) and less-polluting industries. To provide further evidence for the PHE,

I also investigate changes in neighboring, non-treated cities. In both analyses, I construct

the control group from distant, non-neighboring cities.

Separately estimating the impact of KCAPC for treated and non-treated neighboring

cities that are potentially exposed to policy-induced spillovers relative to far-off non-treated

cities is important both theoretically and empirically. By excluding potentially contaminated

neighbors, my research design reduces bias in the estimated effects for treated cities. More-

over, analyzing neighboring cities separately allows me to test whether spatial spillovers

operate through the PHE channel directly. In this way, the approach complements prior

firm-level studies of KCAPC (Liu et al., 2021; Viard et al., 2022) that rely on geographically

proximate controls and help reconcile differences in findings.

Using this framework, I document that the policy targets polluting sectors more aggres-

sively, and find evidence supporting the PHE in both treated cities and their neighboring

areas. In treated cities, the KCAPC reduces emission intensity in polluting sectors and shifts

SO2 emissions toward less-polluting sectors. In terms of economic outcomes, I observe a sub-

stantial increase in output for less polluting sectors and a more modest increase for polluting

sectors. However, there is no significant effect on differential growth patterns, suggesting

that KCAPC led to a shift in pollution composition (i.e., due to cleaner production process

from polluting sectors) rather than a reallocation of economic specialization. The effects are

more pronounced in neighboring cities. Compared to distant control cities, neighboring ar-

eas experienced significant increases in both total emissions and output, with output growth

mainly driven by polluting sectors. My results are robust to different specification checks,

such as a placebo test with randomly assigned treatments and sectors, excluding outliers,

controlling for different fixed effects, etc.

To better understand the mechanisms driving these patterns, I assess three channels:
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within-firm product adjustment, extensive-margin dynamics (entry and exit), and non-

market forces. The evidence points primarily to the third channel.

First, I document “switching” among treated city firms that reallocate production toward

less pollution-intensive products; excluding these firms leaves the baseline patterns essentially

unchanged. Second, while polluting sectors in treated cities exhibit somewhat higher exit

and lower net entry, these effects are quantitatively small, indicating that extensive-margin

dynamics play a limited role. Third, ownership-based heterogeneity shows that reallocation

is largely driven by state-owned enterprises (SOEs): SOEs expand in less polluting sectors

within treated cities and in polluting sectors in neighboring cities, whereas effects for non-

SOEs are small and statistically insignificant. Taken together, these results suggest that the

KCAPC policy induced reallocation primarily through non-market mechanisms operating

via SOEs, rather than through within-firm product switching or entry–exit responses.

The mechanisms uncovered in this paper, such as selective enforcement on limited sectors,

cross-jurisdictional leakage, and politically mediated industrial reallocation, are not unique

to China’s governance system. Recent empirical evidence from the US documents that firms

subject to the Clean Air Act’s (CAA) attainment designations offset regulated air releases by

increasing discharges in plants elsewhere (Gibson, 2019). More recently, the Good Neighbor

Plan (GNP)2 was issued in 2023 that targeted selected upwind states and industries on NOX

emissions. Although the pollutants differ, my findings on SO2 under the KCAPC highlight

how uneven enforcement in regional caps can create “pollution havens” nearby.

This paper contributes to the literature on the Pollution Haven Effect (PHE) and, more

broadly, on leakage from environmental regulation (Antweiler et al., 2001; Barrows and

Ollivier, 2021; Becker and Henderson, 2000; Curtis et al., 2025; Duan et al., 2021; Levinson,

2009, 2023; Tanaka et al., 2022). See Copeland et al. (2022) for a comprehensive review. Most

cross-country studies comparing the global North and South find limited evidence of PHE.

Trade-related changes in emissions tend to be driven by changes in aggregate output (Barrows

2For more details, see Good Neighbor Plan for 2015 Ozone NAAQS.
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and Ollivier, 2021) or in pollution intensity (Cherniwchan, 2017; Holladay, 2016; Najjar and

Cherniwchan, 2021; Shapiro and Walker, 2018), rather than by large shifts in industrial

structure. Within-country work often relies on conditional logit models of location choice

(Wu et al., 2017; Wang et al., 2019; Yang et al., 2018), which present challenges for causal

identification and policy counterfactuals. This paper complements the existing literature

from the following aspects. First, I explicitly identify reallocation toward neighboring (non-

treated) cities as a plausible destination for displaced activity, and causally estimate the

reallocation effect and policy effect using SDID. Second, I show that changes in industrial

composition can emerge over a relatively short horizon, plausibly reflecting political channels

through SOEs, rather than the slower market-driven adjustments emphasized in prior work

(Curtis et al., 2025).

This paper also contributes to the literature on firms’ responses to environmental regula-

tion. Theoretical models suggest that polluting and non-polluting firms may exhibit different

location patterns and stratify into different cities facing regulation (Lange and Quaas, 2007;

Kyriakopoulou and Xepapadeas, 2013). Empirical studies document that firms respond by

upgrading their production processes (Fan et al., 2025; Liu et al., 2021; Shapiro and Walker,

2018) or by circumventing regulation through shifting pollution-intensive activities to unreg-

ulated firms, outsourcing to other countries (Ben-David et al., 2021; Hanna, 2010), within a

country (Fowlie, 2009), or reallocating production within conglomerates (Chen et al., 2025;

Cui et al., 2023; Curtis et al., 2025; Gibson, 2019). The finding in Gibson (2019) is closely

related to this paper. Making use of the conditional exogeneity on non-attainment status and

monitor locations, Gibson (2019) studies the effect of regulation from the CAA on firms’ pol-

lution input and finds that regulated firms double their water emissions instead. Compared

to their findings about regulation-induced substitution between pollution input, this paper

focuses on the substitution between products of different pollution intensity: firms miti-

gate regulatory pressure by shifting their primary production toward less pollution-intensive

products.
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Finally, this paper contributes to the literature on heterogeneous environmental regula-

tion stringency and the principal-agent problem in environmental governance. Prior research

documents that local governments in developing countries often face weak institutions or

prioritize economic growth (Duflo et al., 2013; Du and Li, 2023), which can lead to un-

even enforcement of environmental regulations across regions. A related strand of literature

shows that environmental regulations tend to be more lenient in border areas (Cai et al.,

2016; Lipscomb and Mobarak, 2016; Monogan III et al., 2017). This study further identifies

that provincial governments strategically reallocate production through state-owned enter-

prises, which expand in cleaner sectors within regulated cities and in more polluting sectors

in neighboring ones. These findings differ from those in Chen et al. (2018), who document

city governments trading off economic mandates for environmental performance. This paper

highlight how effectiveness of policy depend on whether the unit of regulation aligns with

the unit of coordination instead.

The remainder of the paper is organized as follows. Section 2 reviews the KCAPC

policy. Section 3 describes the datasets. Section 4 outlines the empirical strategy. Section

5 reports the main results for treated cities and their neighboring cities. Section 6 explores

the underlying mechanisms. Section 7 concludes.

2 Policy Background

In response to increasingly severe pollution problems, China introduced a dedicated envi-

ronmental protection plan in its Tenth Five-Year Plan.3 Among the initiatives launched

under this framework was the Key Cities for Air Pollution Control (KCAPC) policy, one of

the major air quality regulations implemented by the Ministry of Environmental Protection

(MEP) to curb urban air pollution.

The KCAPC policy was first launched in 1998 and expanded later with the objective

of improving air quality in key urban areas. The central government initially designated

3For the official document, see National Environmental Protection 10th Five-Year Plan (in Chinese).
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47 prefecture-level cities — primarily provincial capitals, special economic zones, and major

tourist destinations — as the first batch of targeted cities. A second batch of 66 additional

cities was designated in December 2002 under the Tenth Five-Year Plan.4 These cities were

required to meet specific air quality targets by 2005, based on China’s Class II Air Quality

Standard (GB3095-2000) for SO2 and five other pollutants.

The second-round cities were selected primarily based on their failure to meet the GB3095-

2000 air quality standard in the year 2000, along with additional criteria. After a compre-

hensive assessment of contemporaneous pollution levels and city-level economic conditions,

66 cities were chosen for inclusion in the KCAPC. The selection was guided by three main

considerations: (1) overall levels of economic development and environmental pollution; (2)

inclusion in the Two Control Zones (TCZ), another major national policy targeting SO2

emissions at the city level;5 and (3) cities with cultural heritage deemed in urgent need of

environmental protection. The spatial distribution of both the first and second batches of

KCAPC cities is shown in Figure 1. The map reveals a strong concentration of designated

cities in the more industrialized eastern and central provinces, with relatively sparse cover-

age in the west. This geographic pattern is consistent with the policy’s focus on large urban

industrial emitters and areas with higher administrative capacity.

To comply with the air quality standards, the selected cities were subject to a range

of regulatory instruments outlined in a follow-up directive.6 Provincial and treated city

governors were instructed to restructure the industrial base by shutting down, suspending,

or relocating highly polluting firms, especially those with outdated technology, high energy

consumption, and excessive emissions. Firms were required to install online monitoring

equipment and adopt cleaner energy sources such as electricity, natural gas, and liquefied

petroleum gas. The policy promoted reducing raw coal consumption, introducing clean coal

4For the official document, see Plan for Designating Key Cities for Air Pollution Prevention and Control
(in Chinese).

5The Two Control Zones (TCZ) policy targets both total SO2 emissions and acid rain control.
6For the official document, see National Plan for Pollution Prevention and Control, 2003–2005 (in Chi-

nese).
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technologies, establishing high-pollution fuel ban zones, and providing financial support for

production upgrades.

Empirical research has found that the KCAPC policy significantly reduced pollution in

the targeted cities (Liu et al., 2021; Viard et al., 2022), largely because city governments

were incentivized to enforce the regulations described above. Cities in the first batch were

assessed directly by the MEP, while those in the second batch were evaluated by provincial

environmental protection bureaus, which in turn reported their assessments to the MEP.

As stated in the Tenth Five-Year Plan, environmental protection was the responsibility

of local governments. This was formalized through “letters of responsibility” signed by

mayors, specifying environmental goals for their term.7 Performance was reported to the

MEP, and state media published daily air quality data for these cities. Environmental

outcomes could directly influence officials’ political evaluations and promotion prospects,

further motivating enforcement. These same incentives, however, could also create incentives

to relocate pollution-intensive activities to neighboring jurisdictions, raising the possibility

of cross-border leakage effects.

Additionally, KCAPC policy targeted certain polluting industries more aggressively than

others, as outlined in the Tenth Five-Year Plan. The plan emphasized controlling pollu-

tion from key sectors such as metallurgy, petrochemicals, cement, paper products, and the

textile industry. In a subsequent review report,8 the government highlighted efforts to pro-

mote technological upgrades in these industries, claiming that total output in these sectors

continued to grow while their pollution intensity declined.

Due to data availability constraints, this study focuses on the second round of the policy

implemented in 2002.

7For official document, see Urban Environmental Protection in China (in Chinese).
8See China’s Environmental Protection (1996–2005) (in Chinese) from the State Council Information

Office.
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3 Data

3.1 Annual Survey of Industrial Firms

I use the Annual Survey of Industrial Firms (ASIF) to construct city- and sector-level eco-

nomic outcomes for the period 1998 to 2007. This dataset covers all state-owned enterprises

(SOEs) and non-state-owned enterprises with annual sales exceeding 5 million RMB (ap-

proximately 696,000 USD). The “industry” is defined following China’s National Industrial

Classification to include three categories: mining, manufacturing, and the utilities (produc-

tion and supply of electricity, gas, and water). Collected by the National Bureau of Statistics

(NBS), ASIF includes detailed firm-level accounting information, which is also used to com-

pile aggregated industrial statistics in the China Statistical Yearbook.

ASIF is widely used in empirical research on the Chinese economy. I follow established

practices to clean the data. In particular, I drop observations with missing or negative

values for key financial variables such as output, employment, and capital stock. I also drop

observations that violate basic accounting consistency, such as firms reporting liquid assets,

fixed assets, or net fixed assets that exceed total assets, or current depreciation that exceeds

cumulative depreciation. These procedures follow the guidelines in Yu (2015) and Brandt

et al. (2012).

Using the cleaned dataset, I construct measures of total gross sales revenue, capital stock,

employment, and the number of firms at the city-sector-year level. I also use the average

wage to control for potential differences in labor cost.

3.2 Annual Environmental Survey of Polluting Firms

The Annual Environmental Survey of Polluting Firms (AESPF)9 is the most comprehensive

firm-level environmental dataset available in China. Conducted by the Ministry of Envi-

9This dataset is also referred to as the China Environmental Statistics Dataset (CESD) (Liu et al., 2021;
Zhang et al., 2018) or the Environmental Survey and Reporting Database (ESRD) (He et al., 2020).
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ronment, the survey provides detailed information on firms’ environmental performance,

including emissions of major pollutants, use of pollution abatement equipment, and energy

consumption. Key pollutants include SO2, the primary focus of the KCAPC and this paper,

as well as chemical oxygen demand (COD), ammonia nitrogen, industrial smoke, dust, and

solid waste.

Firms are included in the survey if their emissions rank among the top 85 percent of total

emissions for a given pollutant at the county level. Emission data are initially self-reported

by firms but are subject to random audits and verification by both national and provincial

environmental agencies before inclusion in the dataset. To ensure truthful reporting, the En-

vironmental Protection Law prohibits the use of this data as a basis for regulatory penalties,

reducing firms’ incentives to misreport (He et al., 2020).

Similar to the Annual Survey of Industrial Firms (ASIF), which underlies macroeconomic

indicators, the AESPF serves as the micro-level foundation for environmental statistics re-

ported in the China Statistical Yearbook on Environment. Fan et al. (2025) compares

aggregated pollution indicators from the AESPF to those in the Yearbook and finds them

to be highly consistent.

This paper uses firm-level data on SO2 emissions and total (pre-abatement) generation10

to construct environmental outcome measures.

3.3 Other Data Sources

Additional city-level information is obtained from the China City Statistical Yearbook (CCSY),

an annual publication produced by the National Bureau of Statistics of China. The CCSY

provides comprehensive socioeconomic statistics for municipal-level cities. In this study, I

use data on population and GDP per capita from the CCSY. When these variables are miss-

ing, which happened occasionally for small cities before 2000, I supplement the data using

10SO2 generation refers to the quantity produced before any end-of-pipe control. The AESPF dataset
records both emitted SO2 and SO2 removed by on-site abatement; total generation equals the sum of these
two amounts.
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information from city government annual reports.

Information on whether a city is included in the KCAPC program is obtained from official

government documents and policy notices.

3.4 Merging Datasets

I use the ASIF dataset to examine the impact of the KCAPC policy on the aggregate eco-

nomic structure, and the merged ASIF–AESPF dataset to analyze its effect on environmental

performance. This distinction is necessary because only ASIF contains firms’ sector classi-

fications, which are essential for identifying structural changes. In this section, I present

descriptive statistics for both the full ASIF sample and the merged sample.

Following the procedure in Liu et al. (2021), I merge the AESPF and ASIF datasets us-

ing each firm’s unique identifier and name without fuzzy matching. I restrict the analysis to

manufacturing firms, dropping firms in the mining and utilities sectors. Figure 2 shows the

number of matched firms (left) and the corresponding match rate (right) for each year. Ap-

proximately 13–20 percent of ASIF firms and 38–48 percent of AESPF firms are successfully

matched. The AESPF match rate is consistent with previous literature.

Table 1 reports the number of firms, total gross value of output and SO2 emission for

the ASIF, AESPF, and merged datasets by year. Columns 1, 3, and 5 report statistics for

the full ASIF (or AESPF) dataset, while Columns 2, 4, and 6 present the corresponding

share of the merged sample accounts for. Despite the relatively low match rate on the ASIF

side (13–20 percent), the matched firms account for 30–40 percent of the total gross value

of output, indicating that the merged sample is skewed toward larger firms. As for SO2

emission, the merged dataset roughly accounts for a quarter of the emission. This is lower

than the share of output, which could be due to larger firms being cleaner as well (Shapiro

and Walker, 2018).

Table 2 presents additional descriptive statistics. Column 2 reports SO2 generation

intensity by sector, while Columns 3 and 4 show the share of firms each sector represents
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in the ASIF and merged datasets, respectively. These statistics suggest that more polluting

sectors are disproportionately represented in the merged sample.

Further, I compare the distribution of firm-level emission intensity, output, and capital

labor ratio between the merged dataset and AESPF / ASIF dataset in Figure 3. The

distributions support the argument that the merged dataset skews towards bigger firms that

are more capital-intensive (which are potentially more pollution-intensive).

This sampling skew has implications for how sectoral pollution intensity is measured.

Because I use the merged dataset to calculate pollution intensity and to classify sectors

as either polluting or less polluting, the resulting measures primarily reflect the pollution

profiles of larger firms. However, what matters for my analysis is the relative ranking of

sectoral pollution intensity, which remains stable over time. I return to this issue in Section

4.2, where I discuss the classification of polluting versus less-polluting sectors and examine

the robustness of the ranking-based approach.

4 Empirical Strategy

4.1 Synthetic Difference-in-Difference

As discussed in the Section 2, the cities selected for the KCAPC policy were not randomly

assigned. Consequently, applying a standard difference-in-differences (DID) approach may

yield biased estimates due to potential differences in pre-treatment trends and selection into

treatment.

To address this issue and construct a credible counterfactual, I implement the synthetic

difference-in-differences (SDID) method developed by Arkhangelsky et al. (2021). SDID

is a flexible panel-data approach that combines the strengths of both DID and synthetic

control. The DID framework allows treated and control groups to have parallel but non-

overlapping pre-trends. From the synthetic control framework, SDID assigns unit-specific

and time-specific weights to optimally construct a control group that closely matches the
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treated group’s pre-treatment trends.

This approach generates a set of city and year weights for each control unit, which are

then used to construct the synthetic counterfactual. By doing this, SDID directly addresses

KCAPC’s selection into pollutive, urban areas. A more detailed explanation of the estimation

procedure and weight construction is provided in Appendix A.

To estimate the policy’s impact, I implement two complementary models. The first

examines aggregate outcomes at the city level, while the second explores heterogeneous

effects across sectors by distinguishing between highly polluting and less polluting industries

in cities. These models allow me to assess both the overall effectiveness of the KCAPC policy

and whether it induces structural change consistent with the PHE. The first estimating

equation:

ln(Yct) = δ + γ11{Tc} × Postt + σc + τt + ηct (1)

In this specification, Yct denotes the outcome variable for city c in year t, such as total SO2

emission, industrial output, employment, and capital stock. 1{Tc} is a treatment indicator

equal to 1 if city c is treated. Postt is a post-treatment dummy equal to 1 for years 2002

and onward. Standard errors are clustered at the city level, consistent with the treatment

assignment. This estimator identifies the average treatment effect under the assumption that

the weighted synthetic control group provides a valid counterfactual for treated cities.

The second estimating equation:

ln(Ysct) = α+β11{Tc}×Postt+β2Pols×Postt+β31{Tc}×Postt×Pols+σsc+τt+ϵsct (2)

Here, I further separate outcomes within a city between the top quintile sectors in terms

of polluting intensity and the rest, see Section 4.2 for a detailed explanation. In this model,

Ysct is the outcome for the aggregate sector s in city c at year t. Pols is a dummy that equals
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1 for the sector of top quintile pollution intensity in 1998. I include city-sector fixed effects

to account for variation such as heterogeneity in baseline industrial composition across cities.

If KCAPC alters the economic structure as expected, β̂3 should be negative.

It is important to note that not all untreated cities are suitable for inclusion in the control

group. Cities that share a border with treated cities may serve as destinations for displaced

polluting activities. Including these neighboring cities in the control group could bias the

estimated treatment effect upward by contaminating the counterfactual with indirect policy

exposure. To address this concern, I exclude all adjacent cities from the control group. The

first round of cities is also excluded.

In a complementary analysis, I reclassify these neighboring cities as a separate treat-

ment group to investigate potential spillover effects of the KCAPC policy. Specifically, I

re-estimate the same models described above, replacing the treatment indicator 1{Tc} with

1{Nc}, a binary variable equal to 1 for non-treated cities that border a treated city. Both

the analysis of directly treated cities and the spillover analysis rely on the assumption that

cities more geographically distant from treated areas remain unaffected by the policy.

4.2 Sector Classification and Data Validity Checks

Classify Polluting Sectors. The SDID framework allows me to estimate both aggregate

and heterogeneous treatment effects. To examine heterogeneity, I need to operationalize

which industries are ”polluting” and which are ”less-polluting.” As noted in Section 3.4, the

merged dataset is skewed toward larger firms and polluting sectors, but what matters for the

empirical analysis is the relative ranking of sectoral pollution intensity. In what follows,

I describe how I construct this ranking and classify industries into top-quintile polluting

sectors and the remainder, and I show evidence and robustness checks that support such

classification.

First, to identify polluting sectors of varying intensities, I use the merged dataset from

the baseline year 1998. Sector-level SO2 intensity is defined as the total SO2 generated
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divided by the gross value of output across all firms within each 4-digit sector. To reduce

the influence of outliers and low-count sectors, I exclude sectors with fewer than 10 firms in

the merged dataset. This filtering yields 308 out of 405 4-digit sectors for the final analysis.

To visualize relative SO2 intensity across sectors and its persistence over time, I con-

struct a sectoral ranking index based on deciles of SO2 intensity as of 1998, where a higher

decile rank reflects a more pollution-intensive sector. Figure 4 shows that sectors in the top

decile are significantly more pollution-intensive than those in lower bins. Also, it shows that

sectoral pollution intensity rankings remain broadly stable over time, making the 1998-based

classification suitable for capturing persistent pollution characteristics.

To assess whether KCAPC enforcement varies systematically by pollution intensity, I

estimate the SDID model separately by quintile of sectoral SO2 intensity and report the

results in Table 3. The estimates reveal that the policy has a statistically significant effect

only for sectors in the top quintile. Based on this finding, I classify firms into two categories

for subsequent heterogeneity analysis: those in the top quintile (61 out of 308 sectors) and

those in the bottom 80 percent.

This empirical classification is consistent with qualitative evidence from official govern-

ment documents. As noted in Section 2, the Tenth Five-Year Plan explicitly identifies sev-

eral highly polluting sectors, including paper manufacturing, petroleum processing, chemical

manufacturing, pharmaceutical production, non-metallic mineral products, and ferrous and

non-ferrous metals, as targets for stricter regulatory oversight. Most of these industries are

concentrated within the top quintile of SO2 intensity in the data. Thus, the classification

into top-quintile polluting sectors is both data-driven and aligned with the policy’s stated

regulatory priorities.

Descriptive Statistics. I construct two datasets: one at the city level for aggregate

analysis, and another at the city-sector level to investigate heterogeneous treatment effects.

These datasets are aggregated from firms in the 308 selected four-digit manufacturing sectors

and exclude all cities from the first round of KCAPC implementation. I also drop observa-
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tions from three western provinces, Qinghai, Tibet, and Xinjiang, due to their distinct ethnic

composition, cultural context, and economic development levels, which set them apart from

the rest of the country.

The resulting panel datasets cover a 10-year period from 1998 to 2007 and include 65

treated cities (excluding one from Xinjiang), 128 neighboring cities, and 69 more distant

control cities. Table 4 provides definitions for all variables used in the regression analysis.

Table 5 presents summary statistics for the final datasets. As discussed above, I classify

cities into three groups: second-round treated cities, neighboring (non-treated but adjacent)

cities, and distant control cities. For each group, the table reports the number of observations,

the mean and standard deviation of key variables, and the share of activity accounted for

by firms in top-quintile polluting sectors. Figure 5 plots the map of cities based on their

respective treatment status.

As expected, treated cities exhibit the highest levels of industrial activity, pollution,

and number of surveyed firms, followed by neighboring cities and then distant control cities.

The latter two groups show smaller differences across economic and environmental indicators.

Notably, the share of firms in top-quintile polluting sectors is similar between neighboring and

control cities, which supports their use as comparison groups for examining heterogeneous

treatment effects.

Match Rate Issue. As mentioned previously, a potential concern is that the merged

dataset used in this paper is skewed toward larger firms and more polluting sectors. Although

the merged sample is only used to measure environmental outcomes (e.g., SO2 emissions), it

is important to verify that this sampling skew does not bias the estimated treatment effects.

The key issue arises only if the degree of skewness differs systematically across treatment

groups. To assess this, I conduct two checks.

First, I examine whether treated, neighboring, and control cities have systematically
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different match rates by estimating the following equation:

matchsct = α + β11{Tc}+ β21{Nc}+ τt + σs + ϵsct, (3)

where matchsct is the matching rate between the production and emission datasets for sector

s, city c, and year t. The results in Table B1 show that the match rate does not differ

significantly across treatment groups.

Second, I compare the firm-level distributions of emission intensity, output, and capi-

tal–labor ratios across treatment groups (Figure C1). These distributions are similar be-

tween treated, neighboring, and control cities, indicating that the merged dataset does not

disproportionately represent certain types of firms in any particular group.

Taken together, these results suggest that the bias in the merged sample does not vary

systematically across treatment groups and therefore is unlikely to bias the estimated policy

effects.

Raw DID Pre-Trend Analysis. At last, before presenting the main results, I assess

the plausibility of the parallel-trends assumption underlying the raw difference-in-differences

(DID) framework. Particularly, I estimate the event-study version of the equation (1) for

treated cities without adding SDID weight. I plot the time trend of key outcomes in Figure

C2, which do not have a significant difference before the policy implementation. This sup-

ports the use of a DID-type design and indicates that any bias from differential pre-trends

is likely limited. Nonetheless, to further address the selection issue, I implement the SDID

estimator as the main empirical specification, and report raw DID estimates in Section 5.5

as a robustness check.
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5 Results on Treated and Neighboring Cities

5.1 Effect of Reallocation on Neighboring Cities

I begin by examining whether the KCAPC policy induced spatial reallocation in pollution-

intensive production across city borders. The key empirical implication of the Pollution

Haven Effect (PHE) in my setting is that regulatory stringency in treated cities leads to

a shift of pollution-intensive production to less-regulated areas nearby. Establishing this

pattern is critical to understanding whether the KCAPC generated reallocation rather than

pure abatement.

This analysis focuses on non-treated cities that share a border with treated ones. Panel

A of Table 6 presents the results, and the corresponding event-study plot in Figure 6 shows

no significant pre-trends, supporting the validity of the comparison. Compared with distant

control cities, neighboring cities experienced a statistically significant 20.7 percent11 increase

in total SO2 emissions, a 16.2 percent increase in output, and a 12 percent gain in capital

stock. Columns 1, 2, and 5 show that this growth in emissions was driven primarily by

higher output rather than increased pollution intensity.

Panel B disaggregates these results by sectoral pollution intensity. The largest changes

occur within the top-quintile polluting sectors. Column 5 shows that the increase in total

output is concentrated among these pollution-intensive industries. Unlike the extensive-

margin expansion seen later in treated cities, this growth appears to occur along the intensive

margin: the number of firms changes little, while both output and capital stock increase

substantially. Column 7 shows a similar pattern for capital stock accumulation.

Sector-specific estimates further reinforce this finding. In less-polluting sectors, the num-

ber of firms rose by 6.7 percent, output by 6.8 percent, and capital stock declined slightly

(by 1.8 percent). In contrast, top-quintile polluting sectors saw a 10.9 percent increase in

11For log-transformed outcomes, percent changes are computed as 100 × (exp(β̂) − 1). In this case,

β̂ = 0.188, implying a 20.7 percent increase in SO2 emissions. The same calculation applies throughout the
discussion.
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firm count, a 22.7 percent rise in output, and a 24.9 percent gain in capital stock. Although

not all coefficients are statistically significant, the direction and magnitude of these effects

consistently indicate that neighboring cities increasingly specialized in pollution-intensive

activities following the policy’s introduction.

However, column 1 shows no statistically significant difference in total SO2 emissions be-

tween polluting and less-polluting sectors, which may reflect two offsetting effects: expansion

of output in cleaner sectors and modest declines in emission intensity among polluting sec-

tors. This interpretation is supported by Columns 1 and 5. Together, these results provide

direct evidence consistent with a Pollution Haven Effect operating across city borders.

Having established that pollution-intensive activity expanded in neighboring cities, I next

examine what happened in the regulated (treated) cities themselves.

5.2 Effect of KCAPC on Targeted Cities

Having documented reallocation to neighboring cities, I now turn to the direct effects of

the KCAPC policy on the targeted, regulated cities. This analysis reveals whether the

policy succeeded in reducing pollution in treated cities and whether it triggered structural

adjustments within their industrial composition.

To assess dynamic treatment effects and check for pre-trends, I estimate the event-study

version of Equation (1). The resulting point estimates are plotted in Figure 7. The coef-

ficients show no statistically significant pre-trends prior to the policy’s implementation in

2002, supporting the credibility of the identification strategy. Post-treatment effects do not

reveal a consistent or significant decline in either economic activity or environmental out-

comes. In particular, there is no clear downward trend in total SO2 emissions or economic

indicators following the policy.

Panel A of Table 7 reports the average treatment effects at the city level. The coefficients

on SO2 emissions and emission intensity per unit of output are negative, but none are sta-

tistically significant. In contrast, Columns 4 through 7 indicate that the policy is associated

19



with a statistically significant 13.4 percent increase in total output, driven mainly by a 19.5

percent increase in the number of firms. This suggests that the average firm size declined,

implying that the policy may have encouraged the entry of smaller firms, as aggregate pol-

lution did not fall. This result is somewhat surprising, as the policy was designed to curb

pollution, yet it results in an expansion of manufacturing activity in treated cities.

To understand these patterns, I estimate the heterogeneous effects using Equation (2),

which distinguishes between polluting and less-polluting sectors. Panel B of Table 7 presents

the results. Column 1 shows that emission intensity in polluting sectors declined by 18.9

percent, while less-polluting sectors saw a small and statistically insignificant increase. Col-

umn 2 indicates that SO2 generation per unit of output fell by 16.4 percent, implying that

about 86.8 percent of the observed reduction came from cleaner production processes rather

than end-of-pipe abatement.

Column 3 shows that total SO2 emissions in polluting sectors fell by 10.7 percent, while

those in less-polluting sectors increased by 55 percent. Given that top-quintile polluting sec-

tors accounted for 73.3 percent of baseline emissions, the implied overall change corresponds

to a 6.8 percent increase in aggregate emissions—slightly smaller than the direct city-level

estimate.

The increase in emissions from less-polluting sectors appears driven by output expansion,

as shown in Column 5. However, output in these sectors rose by only 15.3 percent, compared

to a 55 percent increase in emissions. This suggests that the additional production was

significantly more pollution-intensive than before. This raises an important question: why

do emissions rise in cleaner sectors, despite regulation targeting polluting sectors? As I will

show in Section 6.1, this pattern is likely explained by firms in polluting sectors shifting

toward less pollution-intensive product lines.

For polluting sectors, Columns 4 through 7 suggest more modest economic effects. Output

increased by 7.8 percent, and the number of firms rose by 19.6 percent. This further supports

the fact that firms in polluting sectors are now smaller. Although these effects are smaller in
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magnitude than those for less-polluting sectors, they are still positive and not statistically

significant. Together, these findings suggest that the KCAPC policy did not result in an

absolute contraction of polluting industries, but rather altered their relative growth patterns

across sectors.

Overall, the results suggest that at the city level, the KCAPC policy primarily affected

top-quintile polluting sectors and led to a shift in the source of emissions from these highly

polluting industries toward relatively cleaner sectors. In terms of economic outcomes, I find

that output grew significantly in less-polluting sectors, while growth in polluting sectors was

more modest. However, although the coefficients for triple-difference indicators are negative,

they are all insignificant, which is not strong enough to conclude that the policy induced

a meaningful shift in economic specialization across sectors. Taken together, these results

imply that there was a shift in pollution composition rather than economic specialization.

These findings differ from prior firm-level studies of the KCAPC policy, such as Liu et al.

(2021) and Viard et al. (2022), which report significant reductions in firm-level emissions.

Two factors may explain this divergence. First, my analysis focuses on sector-level aggre-

gates, while their estimates are at the firm level, potentially capturing different aspects of the

policy’s effect. Second, the research designs differ in the construction of control groups. In

particular, both of these studies rely on control observations from neighboring cities, either

through propensity score matching (Liu et al., 2021) or geographic proximity (Viard et al.,

2022), which are likely to have been affected by pollution spillovers. If treated cities shifted

production to nearby areas, then using these cities as controls would bias estimated treat-

ment effects downward. In the next section, I test this manifestation of the PHE directly

and find evidence supporting my research design.

5.3 Location Quotient Analysis

The treated and neighbor results suggest that the KCAPC policy reshaped the sectoral com-

position of output and emissions in ways consistent with the PHE. To further validate this
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interpretation, I examine changes in regional industrial specialization using the Location

Quotient (LQ) index. The LQ is a standard measure of relative specialization in agglomer-

ation literature, defined as the ratio of a sector’s share of activity in a city to its share at

the national level.12 An LQ above one indicates that a city is more specialized in that sector

than the national average, while an LQ below one indicates less specialization.

While LQ provides an intuitive measure of specialization, absolute changes in LQ are

not directly comparable across outcomes (firms, output, employment, capital) or over time.

A shift of 0.1 in LQ may represent a meaningful change in one context but be negligible

in another, depending on baseline variation. To facilitate comparability of effects across

outcomes, I standardize the index within each year and sector to obtain a z-score measure

(zLQ).13 This rescaling expresses treatment effects in units of standard deviations relative

to contemporaneous cross-city variation.

Restricting my analysis to the top quintile polluting sectors only, I estimate the following

equation:

zLQct = α + β11{Wc} × Postt + σc + τt + ϵct (4)

Where zLQct are standardized LQ for polluting sectors in targeted cities, and 1{Wc}

are either a dummy for the second round KCAPC cities or their respective non-treated

neighbors.

I plot the coefficients as well as their respective 90% and 95% confidence intervals in

Figure 8. The results show that treated cities experience a relative decline in LQ for polluting

sectors, whereas neighboring cities see an increase, consistent with PHE. This additional

evidence reinforces the baseline findings and complements the sector-level regression analysis.

12LQ has the following form: LQrs =
Nrs/Nr

Ns/N
, where Nrs is the number of firms (or output, employment,

or capital) in sector s and city r, Nr is the total in city r, Ns is the total in sector s, and N is the overall
total across all cities and sectors.

13zLQ = LQ−LQmean

LQsd
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5.4 Discussion

In summary, the evidence from both treated cities and their neighboring regions suggests that

the KCAPC policy primarily targets and affects top-quintile polluting sectors, but its overall

effectiveness is limited. While the policy reduces both total SO2 emissions and emission

intensity within polluting sectors of treated cities, the net city-level effect on emissions is

positive, albeit statistically insignificant. At the same time, neighboring cities experience a

significant increase in emissions driven by growth in polluting sectors.

Overall, these findings provide empirical support for the Pollution Haven Effect at the

regional level. First, in treated cities, there is a clear shift in the composition of pollution

from high- to low-intensity sectors. Second, in neighboring cities, the increase in output is

largely concentrated in pollution-intensive sectors. Third, within treated cities, the KCAPC

policy appears to stimulate greater expansion in less-polluting sectors.

In the next section, I investigate the underlying mechanisms that may be driving these

observed patterns of adjustment across regions and sectors.

5.5 Robustness Check

To further validate the results of the previous sections, I estimate my model with different

settings as a robustness check.

5.5.1 Other Pollutant

First, I check the effect of the KCAPC policy on water pollution instead. China started

various environmental regulation programs during my study period. Hence, it is possible

that KCAPC coincides with other programs that target another source of pollution, i.e.,

water pollution. To verify that KCAPC policy’s SO2 regulation indeed drives the results, I

estimate the policy effect on chemical oxygen demand (COD)14 in Table B2 as a robustness

14COD measures the total amount of oxygen required to chemically oxidize organic and inorganic com-
pounds in water, which is a common indicator for water pollution
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check. The coefficients are all small and insignificant. The absence of similar patterns for

COD confirms that observed shifts are pollutant-specific to SO2 regulation.

5.5.2 Randomly Assigned Treatments

To ensure that the results are not driven by the use of the SDID model or by particular

city–sector assignments, I conduct two placebo exercises by randomly assigning treatment

status. First, I randomly select 65 cities15 as treated 250 times and re-estimate the SDID

specification. Figure C3 plots the distribution of β̂3 (1{Tc} × Post × Pol) across these

simulations. If the KCAPC policy truly drives the observed effects, the placebo distributions

should be centered around zero, with no systematic negative effects for “treated” cities or

positive effects for their neighbors. Consistent with this expectation, the simulated mean

distributions are all close to zero and differ markedly from the baseline estimates. The only

exception is a larger dispersion for total SO2 emissions, likely reflecting the bias of the merged

dataset toward large polluting firms. Importantly, the significant baseline coefficients fall in

the tails of the simulated distributions, providing evidence that the main results are not

artifacts of model choice or idiosyncratic city selection.

Applying the same approach, I randomly designate 61 sectors16 as “treated” polluting

sectors 250 times and re-estimate the SDID specification. Figure C4 shows the resulting

distribution of β̂3. As expected, the simulated mean coefficients are centered around zero

or display signs opposite to the baseline estimates. In contrast, the significant baseline

coefficients lie in the tails of the placebo distributions, reinforcing the conclusion that the

observed effects reflect heterogeneity between pollution-intensive and less-polluting sectors.

5.5.3 Outliers

A remaining concern is that the results could be driven by a few influential cities or sectors.

Although first-round KCAPC cities (mostly provincial capitals and special economic zones)

15Consistent with the actual number of treated cities after excluding three western provinces.
16This number matches the actual count of top-quintile polluting sectors out of 308.
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are excluded, some second-round cities or particular sectors might still exert disproportionate

influence. I therefore implement leave-one-out (LOO) checks.

First, I drop one treated city at a time, and re-estimate the sectoral SDID specification,

collecting the distribution of β̂3. I repeat the exercise for the neighboring-city analysis by

dropping one neighbor at a time. If the baseline estimates are not driven by outliers, the

LOO distributions should remain negative for treated cities and positive for neighbors.

Figure C5 shows that the treated-city LOO distributions are tightly centered on the base-

line coefficients with limited dispersion. β̂3 remains negative throughout. The corresponding

neighbor LOO distributions (Figure b) are also centered on the baseline. These patterns

indicate that no single city drives the main results.

Second, I perform an analogous LOO exercise at the sector level, dropping one of the 61

top-quintile sectors in turn and re-estimating the model. Figure C6 shows that the LOO

distributions are again centered close to the baseline coefficients. One notable dispersion

appears for the total SO2 emissions when excluding steelmaking. This is unsurprising given

its size and pollution intensity. Even in that case, the estimated effect remains large and

negative (around - 0.3), while the pollution-intensity results are stable and much less dis-

persed.

Overall, the LOO evidence indicates that the baseline findings are not driven by a small

set of influential cities or sectors.

5.5.4 Model Specification

Additionally, to verify that the results are not driven by unobserved industry-specific trends

over time, I re-estimate the SDID model including both city–sector and sector–year fixed

effects. The results for treated and neighboring cities are reported in Table B4 and Table

B3, respectively. Compared with the baseline estimates, adding sector–year fixed effects

instead of year fixed effects has little impact on the magnitude or statistical significance

of the coefficients. This robustness suggests that differential sectoral trends are unlikely
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to explain the main findings. One possible interpretation, consistent with Gibson (2019),

is that abatement responses are largely discrete — reflecting one-time adjustments that

stabilize thereafter — rather than persistent trends across industries.

5.5.5 Raw DID estimates

Finally, I also estimate the policy effects using a conventional DID model without synthetic

weighting. The results are reported in Table B6 and Table B5, which are consistent in both

magnitude and sign with the SDID estimates, reinforcing that the findings are not sensitive

to the choice of estimator.

6 Mechanisms

To better understand the mechanisms driving the patterns presented in the above section,

I assess three channels: within-firm product adjustment, extensive-margin dynamics (entry

and exit), and non-market forces (State-ownership). The evidence points primarily to the

third channel.

6.1 Firms Switching Products

Existing literature has documented that firms adjust their product mix in response to changes

in market conditions and policy incentives (Bernard et al., 2010). In the context of envi-

ronmental regulation, Gibson (2019) show that firms substitute among pollution inputs (for

example, from air to water emissions) when relative abatement costs change. Hence, it is

plausible that firms mitigate regulatory pressure by shifting toward less pollution-intensive

products or sectors, particularly when policies target specific industries.

I next examine whether such within-firm adjustments help explain the heterogeneous

patterns observed above. Specifically, I document evidence that the KCAPC policy induced

a reallocation of production toward less-polluting sectors within treated cities, but that
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this “switching” behavior does not drive the observed cross-city differences in production

patterns.

While the ASIF dataset lacks detailed product-level information, it records each firm’s

principal 4-digit industry classification, defined by the National Bureau of Statistics as the

firms’ principal production category.17 Using this information, I identify firms that change

their 4-digit sector across years, treating such changes as switches in principal production

activity. In particular, I focus on firms that move from a top-quintile polluting sector to

a less-polluting one, hereafter switching firms. Although some reclassifications may reflect

coding noise rather than real production changes, the patterns below suggest that any mis-

classification is limited and unlikely to bias the results.

Switching firms are concentrated in highly polluting industries and tend to change produc-

tion within the same 2-digit division. Figure C7 shows that 2-digit sectors with the highest

frequency of switches are also those with greater pollution intensity. Roughly 75 percent of

switching firms remain within their original 2-digit sector, implying a move to less-polluting

activities within the same industry. Examples include chemical producers shifting from ba-

sic to organic chemicals, textile firms moving from fiber processing to finished textiles, and

non-metal mineral enterprises transitioning from cement to concrete products.

Switching behavior is also more prevalent in treated cities. Figure C8 reports the share

of switching firms and their contributions to aggregate outcomes by treatment group. Two

patterns emerge. First, switching firms are larger and more polluting on average, as reflected

in their disproportionate shares of total output and SO2 emissions relative to their popu-

lation share. Second, treated cities exhibit a noticeably higher incidence of switching than

neighboring or distant control cities. These patterns suggest that product switching is one

channel through which firms adapt to sector-specific environmental regulation.

To examine this formally, I estimate two equations:

17According to the National Bureau of Statistics, a firm’s principal activity is the one that contributes
the largest share of its value added. See Statistical Systems and Classification Standards (17) (in Chinese).
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Switchit = β11{Ti} × Postt + γXct + σi + τt + ϵit (5)

ln(Yit) = β11{Ti} × Postt × Switchit + γXct + σi + τt + ϵit (6)

Where i indexes the firm, c denotes the city, and t represents the year. The depen-

dent variable in the first equation, Switchit, is a binary indicator equal to one if a firm

switches from a top-quintile polluting sector to a less-polluting sector in year t. The sec-

ond specification examines the correlation between switching and firm-level outcomes. The

key regressor is a triple interaction between KCAPC treatment, the post-treatment period,

and the switching indicator. Yit includes outcomes such as firm output, capital stock, and

employment.

Table 8 presents the results. Column 1 shows that firms in treated cities are significantly

more likely to switch to less-polluting sectors after the policy. Columns 2–4 indicate that,

conditional on switching, these firms exhibit higher output and capital stock in the post-

policy period. These findings suggest that switching serves as a proactive strategy allowing

firms to sustain or even expand performance under regulatory constraints.

To assess whether such switching behavior explains the cross-city differences documented

earlier, I re-estimate the baseline model after excluding all switching firms. Columns 1–2 of

Table 9 compare the results for treated and neighboring cities with those based on the full

sample. For consistency, switching in neighboring cities is symmetrically defined as firms

moving from less- to more-polluting sectors. The coefficients remain virtually unchanged

across specifications, indicating no meaningful differences for either treated or neighboring

cities. Therefore, while product switching is indeed a response to KCAPC regulation, it does

not account for the differential production patterns observed across cities.
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6.2 Entry and Exit

Having examined within-firm adjustments, I turn to the extensive margin. Specifically,

I study how the KCAPC affected entry and exit in treated and neighboring cities, which

sheds light on whether location decisions reinforce or drive the observed changes in industrial

composition. The evidence shows that entry–exit dynamics reinforce sectoral shifts but do

not account for them.

Because ASIF covers only non-SOEs with annual sales above 5 million yuan, identifying

true entrants requires care. I define a firm as an entrant in year t if it appears in the sample

for the first time in t and: (i) its reported birth year is not before 1998 (the first sample

year), and (ii) if it first appears after 2002, its reported birth year is not before 2002. These

restrictions reduce false positives created by left-censoring and delayed inclusion. An exiter

is a firm whose last observation occurs in year t; I censor the final sample year by excluding

firms whose last observation is in 2007 to avoid conflating exit with sample termination.18

At the city–sector level, the entry rate (respectively, exit rate) is the fraction of entrants

(exiters) in the total number of firms; net entry is the difference between the two. I estimate

policy effects on these outcomes using the main city–sector specification and report the

results in Table 10.

Panel A shows that, in treated cities, polluting sectors experience a statistically significant

increase in the exit rate and a decline in net entry (Columns 1 and 3), consistent with some

turnover away from pollution-intensive activities. Magnitudes are small, economically close

to zero, and entry effects are weak, indicating that extensive-margin responses account for

only a limited share of the overall adjustment. In neighboring cities (Panel B), the policy

has no statistically discernible effects on entry, exit, or net entry.

Taken together, the extensive margin does not appear to be the primary channel through

which KCAPC reshapes industrial composition. Rather, reallocation operates mainly along

18Results are robust to (i) requiring two consecutive years of presence for entrants, (ii) defining exit as
no reappearance for two subsequent years, and (iii) additionally censoring 2006.
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the intensive margin, through adjustments among incumbents (expansion of less-polluting

producers and contraction in pollution intensity among polluting sectors). The next subsec-

tion shows that these incumbent adjustments are concentrated among SOEs.

6.3 State-Owned Enterprises and Non-SOEs

Finally, I examine whether the observed reallocation was driven by non-market forces. While

prior studies find that structural reallocation typically unfolds gradually over long periods

(Curtis et al., 2025), my results show substantial changes within just five years (2002–2007).

Such rapid adjustment raises the possibility that the reallocation was facilitated by govern-

ment intervention at the provincial level. In particular, I find that State-Owned Enterprises

(SOEs)19 absorbed most of the adjustment within treated cities and the increase in pollut-

ing activity in neighboring cities, suggesting their role as instruments of policy coordination

across jurisdictions.

Local governments in developing countries often operate under weak institutional con-

straints or prioritize economic growth over regulation (Duflo et al., 2013; Jia, 2017; Du and

Li, 2023). As a result, pollution-intensive firms tend to cluster near the borders of regulated

jurisdictions to minimize enforcement (Lipscomb and Mobarak, 2016; Monogan III et al.,

2017; Cai et al., 2016). This pattern is particularly salient in China, where provincial offi-

cials face top-down performance evaluations emphasizing GDP growth (Chang et al., 2025).

This “top-down amplification” (Jia, 2017) can lead provinces to reallocate polluting activities

to nearby, less-regulated cities within their borders to simultaneously satisfy environmental

and growth targets.

SOEs are well-positioned to facilitate such political objectives for two reasons.

First, they represent a substantial share of the a city’s industrial base, particularly in

heavy and pollution-intensive sectors. Table B7 reports SOE shares in firm counts, output,

and SO2 emissions across all sectors, while Table B8 focuses on polluting sectors. Although

19I classify SOEs following Hsieh and Song (2015). A firm is identified as an SOE if it is explicitly
state-controlled or if the share of registered capital held by the state equals or exceeds 50 percent.
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treated cities began the period with similar SOE shares as other regions, their decline in

SOE presence over time was noticeably slower. Moreover, within polluting sectors, SOEs ac-

counted for a larger share and exhibited a sharper rate of decline, consistent with differential

adjustment by ownership type.

Second, SOEs are expected to facilitate the provincial and city governments in fulfilling

policy targets (Berkowitz et al., 2017). Provincial governments exert substantial control over

SOEs, including managerial appointments, investment decisions, and privatization author-

ity.20 Figure C9 shows that treated cities maintained higher shares of non-privatized SOEs

in 2007 in both output and emissions. These patterns suggest that city governments, under

provincial oversight, relied on SOEs to buffer against the policy’s economic costs.

To test this formally, I re-estimate the policy effects separately for SOEs and non-SOEs.21

Results are presented in Columns 3–6 of Table 9.

In treated cities, SOEs are the main source of heterogeneity between polluting and less-

polluting sectors. As shown in Column 4 of Panel A, output in less-polluting sectors expanded

by 0.495, compared with a smaller increase of 0.207 in polluting sectors, a difference partly

driven by changes in firm counts (Column 3). In contrast, for non-SOEs (Columns 5–6),

coefficients are small, statistically insignificant, and similar across sector types. These results

indicate that provincial and city governments leveraged SOEs to absorb regulatory pressure

and maintain production stability. Based on coefficient magnitudes and output shares, SOEs

account for approximately 78 percent22 of the observed output increase in less-polluting

sectors.

In neighboring cities (Panel B), the pattern reverses: SOEs exhibit pronounced growth in

polluting sectors, while non-SOEs expand in both polluting and cleaner sectors. This asym-

20For official documentation, see Interim Regulation on the Supervision and Administration of State-
owned Assets of Enterprises (2003) (in Chinese) and Measures for Guiding and Supervising the Regulation
of Local State-owned Assets (2011) (in Chinese), as well as Hsieh and Song (2015) for discussion.

21SOEs are defined as all firms that were ever state-controlled during the sample period, given that former
SOEs may retain close ties with local governments.

22The contribution of SOEs is calculated as x = 1− w · βsoe

β , where w is the output share of SOEs (22.5

percent), βsoe is the coefficient for KCAPC×Post in Column 4, Panel A, Table 9, and β is the corresponding
coefficient in Column 5, Panel B, Table 7.
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metry suggests that provincial coordination redistributed polluting activities from regulated

to neighboring cities using SOEs.

Overall, the heterogeneous treatment effects between polluting and less-polluting sectors

are largely driven by SOEs. The persistent presence of SOEs in treated cities helps ex-

plain why non-SOEs were more likely to relocate to neighboring cities. SOEs’ closer ties to

provincial authorities make them suitable instruments for policy implementation.

Beyond political motives, an additional economic mechanism reinforces this pattern.

Provincial governments could channel preferential financing and investment opportunities

toward SOEs, lowering their effective cost of capital and enabling them to expand in tar-

geted sectors. Indeed, Berkowitz et al. (2017) documents rising capital intensity among SOEs

during this period, consistent with fiscal and financial support. Similarly, Table B9 shows

that SOEs in treated cities increased capital stock more strongly in less-polluting sectors,

while in neighboring unregulated regions, the opposite pattern emerges. This sector-specific

investment behavior underscores that both political and economic incentives shaped the

strategic use of SOEs in mediating the effects of environmental regulation.

The rapid, symmetric adjustment across neighboring cities dominated by SOEs, suggests

that the mechanism operates primarily at provincial level rather than city level. If the

observed pattern is due to unregulated city trying to attract dirty production, I would expect

greater variation across neighboring unregulated cities, i.e., some “winning” and others not.

Addionally, I expect to observe similar (or even stronger) pattern for non-SOEs as non-SOEs

are more profit driven. Instead, the dominant role of SOEs point to provincial coordination

as the more plausible explanation.

Together, the findings are consistent with the view that provincial governments strategi-

cally used SOEs to absorb regulatory pressure, aided by city-level facilitation: by expanding

SOEs’ presence in less-polluting sectors within treated cities and in polluting sectors within

neighboring cities, provincial governments mitigated the economic costs of environmental

regulation while formally complying with policy mandates.
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6.4 Discussion

Across the three channels, the evidence points to a common mechanism. First, within-firm

product switching is more prevalent in treated cities and is economically meaningful for

those firms, but excluding all switchers leaves the city-level results unchanged, indicating

that switching does not account for cross-city reallocation. Second, entry–exit responses

are statistically detectable only in treated polluting sectors (higher exit, lower net entry)

and are small in magnitude, implying that the extensive margin reinforces but does not

drive aggregate patterns. Third, ownership heterogeneity is decisive: SOEs absorb most of

the adjustment in treated cities’ less-polluting sectors and expand in polluting sectors of

neighboring cities. Calculations indicate that SOEs account for roughly 78% of the observed

increase in output in less-polluting sectors within treated areas.

To sum up, these facts are consistent with a provincial coordination mechanism, imple-

mented through SOEs and facilitated by city governments: provinces reallocate pollution-

intensive activity from regulated to neighboring cities while preserving production in treated

areas by shifting SOE capacity toward cleaner sectors. This mechanism reconciles the ab-

sence of large aggregate contractions in treated cities with the documented rise in pollution

and output next door, thereby providing a concrete channel for the Pollution Haven Effect

within China’s administrative hierarchy.

7 Conclusion

Can city-specific environmental regulation induce Pollution Haven–style reallocation, and

through which mechanisms do such effects operate? To address these questions, this paper

examines China’s Key Cities Air Pollution Control (KCAPC) program, which is a national

policy that imposed stricter emission controls on pollution-intensive sectors in selected cities,

and evaluates its environmental and economic consequences. I analyze both aggregate out-

comes (total emissions and pollution intensity) at the city level and sectoral responses in
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output, capital, and employment.

Using a synthetic difference-in-differences approach to construct credible counterfactuals,

I document evidence consistent with a within-country Pollution Haven Effect: The KCAPC

policy significantly reduces pollution intensity only among the most pollution-intensive (top-

quintile) sectors in treated cities. At the same time, treated cities shift production to-

ward cleaner sectors, while neighboring non-regulated cities expand output and capital in

pollution-intensive sectors.

Further analysis points to two mechanisms behind these patterns. First, provincial gov-

ernments strategically reallocate production through state-owned enterprises, which expand

in cleaner sectors within regulated cities and in more polluting sectors in neighboring ones.

Second, some firms adjust within cities by shifting their principal products toward less

pollution-intensive activities. Together, these results suggest that policy-induced reallocation

is primarily coordinated through political rather than purely market channels.

Overall, the findings underscore that environmental regulation implemented at a lower

administrative level can displace emissions to adjacent jurisdictions. The effectiveness of

such policies therefore depends on whether the unit of regulation aligns with the unit of

coordination for economic activity and enforcement. Designing policy to match these units,

and to anticipate inter-jurisdictional spillovers, can improve both environmental effectiveness

and distributional outcomes.
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Tables

Table 1: Annual Statistics of Original and Merged Datasets

N (Firms, thousand) GVO (trillion RMB) SO2 Emission (million ton)

Year ASIF Merged (%) ASIF Merged (%) AESPF Merged (%)

1998 133.5 15.9 5.8 30.9 13.6 36.4
1999 132.7 19.2 6.2 38.0 11.4 26.5
2000 135.2 20.2 7.3 39.8 12.7 25.6
2001 145.6 18.9 8.2 39.0 13.5 24.2
2002 154.9 18.0 9.6 39.8 13.3 24.8
2003 173.2 16.6 12.6 37.7 14.9 24.4
2004 244.7 13.7 17.2 37.1 17.3 25.6
2005 241.7 13.9 21.3 38.9 19.9 24.9
2006 269.9 13.6 26.8 39.2 20.6 23.6
2007 304.3 15.5 34.7 41.5 19.5 26.7

Notes : N is the total number of firms (thousand), GVO is gross value of output (trillion
RMB), and SO2 Emission is sulfur dioxide emissions (million tons). For each variable,
the column labeled “Merged (%)” reports the share of the variable successfully matched
into the merged dataset relative to the corresponding total in the original dataset (ASIF
for firms and GVO, AESPF for SO2). For example, in 1998 the merged dataset contains
15.9% of the firms recorded in ASIF.
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Table 2: Pollution Intensity by Sector (Ranked by SO2/GV O)

Sector Name SO2/GV O Fraction Firms (ASIF) Fraction Firms (Merged)

Non-Metal Minerals 8.10 8.58 16.03
Non-Ferrous Metals 7.63 1.93 2.69
Petroleum Processing 6.08 0.72 1.29
Paper Products 4.19 2.98 5.38
Chemical Products 3.96 7.49 12.46
Wood Processing 2.83 2.02 1.16
Ferrous Metals 2.20 2.33 3.67

Beverage 2.16 1.75 3.33
Textile 1.76 8.46 9.57
Food Manufacturing 1.53 2.57 3.73
Chemical Fiber 1.46 0.53 0.54
Rubber Products 1.38 1.18 1.13
Pharmaceuticals 1.17 2.04 4.24
Food Processing 1.14 6.29 6.31
Special Equipment 0.89 4.18 2.46
Electronics 0.81 2.04 1.33
Plastic Products 0.80 4.60 1.63
Clothing 0.77 4.83 1.35
Tobacco 0.77 0.13 0.38
Instruments 0.74 1.77 1.16
Other 0.73 1.06 0.66
Transport Equipment 0.69 4.54 3.51
Printing 0.60 2.10 0.88
Leather Products 0.60 2.37 1.42
Furniture 0.59 1.16 0.34
General Machinery 0.58 7.38 4.58
Metal Products 0.55 5.62 3.87
Cultural Goods 0.48 1.31 0.46
Electrical Equipment 0.27 4.19 2.85

Notes : This table lists 2-digit sectors ranked by SO2 emission intensity (SO2/GV O, kg
/ thousand yuan). Columns 3 and 4 report the fraction of firms a sector accounts for in
the ASIF and Merged datasets. The horizontal line separates sectors: those above the
line are mentioned in the Five-Year Plan (except the wood processing sector).
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Table 3: Effect on Sectors by Pollution Intensity Quintiles

(1) (2)

VARIABLES ln(SO2e/Out) ln(SO2e/Out)

1{T} × Post 0.137

(0.481)

1{T} × Post × Q2 -0.173 -0.184

(0.449) (0.434)

1{T} × Post × Q3 -0.333 -0.340

(0.161) (0.161)

1{T} × Post × Q4 -0.095 -0.149

(0.693) (0.537)

1{T} × Post × Q5 -0.408* -0.403*

(0.065) (0.068)

City FE Y

City-Year FE Y

Sector-Year FE Y Y

Observations 4,573 4,560

R-squared 0.563 0.668

Notes: p-values in parentheses. *** p<0.01, **
p<0.05, * p<0.1. Standard errors clustered at the
city level. Qn represent nth quntile in terms of sec-
toral pollution intensity.
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Table 4: Variable Definitions

Variable Name Definition

1{T} A dummy that equals 1 for second round KCAPC cities
1{N} A dummy that equals 1 for cities neighboring a 2nd round KCAPC cities
Pol A dummy that equals 1 for top quintile polluting sectors
Post A dummy that equals 1 for year 2002 and onward
SO2etot Total sulfur oxide (SO2) emission
SO2e/Out Average firm-level SO2 emission intensity (firm total emission over total output)
SO2g/Out Average firm-level SO2 generation intensity (firm total pollution generated over total output)
Nfirms Total number of firms
Output Total firm output (in thousand yuan)
Emp Total number of firm employment
Cap Total firm captical stock (in thousand yuan)
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Table 5: Summary Statistics

Variable (1) Control (2) Neighbor (3) Treated

N Mean
SD Top 20% N Mean

SD Top 20% N Mean
SD Top 20%

SO2 Emission 667 6.3 76.3 1,252 8.3 74.7 640 17.1 73.3
(10.5) (9.2) (19.5)

SO2 Generation 667 11.3 76.9 1,252 16.9 75.7 640 26.1 73.2
(34.6) (44.9) (31.6)

Number of Firms 690 323.0 28.9 1,280 315.2 32.8 650 579.4 31.3
(629.6) (489.4) (805.9)

Output 690 25.1 39.3 1,280 21.3 40.6 650 54.6 39.8
(66.1) (34.5) (87.2)

Employment 690 89.8 41.4 1,280 78.7 44.3 650 171.1 43.4
(198.4) (90.7) (167.9)

Capital Stock 690 7.1 48.6 1,280 6.8 51.2 650 18.4 49.8
(13.6) (7.9) (19.1)

Export 690 5.8 – 1,280 2.4 – 650 5.7 –
(22.9) (8.8) (14.3)

Mean wage 690 10.5 – 1,280 9.9 – 650 10.6 –
(4.5) (4.6) (4.5)

Population 690 2,791.5 – 1,280 3,725.3 – 650 4,165.0 –
(2,010.5) (2,079.5) (2,165.2)

Notes: The observations (N) here are aggregated at the city level. Emission and economic outcomes have a
different number of observations because some city-years observations do not have matched SO2 outcomes.
Standard deviations are reported in parentheses. All SO2 outcomes are in thousand tons. All monetary
values are in billion RMB, except the mean wage is in thousand RMB. Employment and population are in
thousands. In “Top 20%” column, I report the percentage of the total contributed by top quintile polluting
sectors.
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Table 6: Effects of KCAPC on Neighboring Cities

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2e/Out) ln(SO2g/Out) ln(SO2etot) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

Panel A. Aggregate Effects

1{N} × Post 0.000 -0.016 0.188* 0.092 0.150** 0.014 0.113**

(0.999) (0.851) (0.067) (0.106) (0.011) (0.782) (0.030)

City FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 1,558 1,558 1,907 1,950 1,755 1,950 1,755

R-squared 0.754 0.760 0.799 0.947 0.967 0.969 0.961

Panel B. Heterogeneous Effects

1{N} × Post 0.013 0.003 0.158 0.065 0.066 -0.035 -0.018

(0.907) (0.977) (0.278) (0.303) (0.381) (0.541) (0.782)

Pol × Post 0.272*** 0.282*** 0.097 -0.008 -0.263*** -0.229*** -0.271***

(0.006) (0.006) (0.429) (0.791) (0.000) (0.000) (0.000)

1{N} × Post × Pol -0.051 -0.055 -0.006 0.038 0.138* 0.079 0.240***

(0.683) (0.665) (0.968) (0.334) (0.093) (0.113) (0.001)

β̂1 + β̂3 -0.038 -0.052 0.152 0.103 0.204 0.044 0.222

City-Sector FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 3,090 3,091 3,778 3,900 3,510 3,900 3,510

R-squared 0.798 0.806 0.798 0.948 0.951 0.959 0.939

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. β̂1 represent 1{N} × Post and β̂3 represent 1{N} ×
Post × Pol. β̂1 + β̂3 reports the combined effect on polluting sectors.
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Table 7: Effects of KCAPC on Treated Cities

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2e/Out) ln(SO2g/Out) ln(SO2etot) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

Panel A. Aggregate Effects

1{T} × Post -0.083 -0.058 0.098 0.178*** 0.126** -0.016 0.068

(0.425) (0.576) (0.417) (0.003) (0.031) (0.741) (0.184)

City FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 1,054 1,054 1,295 1,320 1,188 1,320 1,188

R-squared 0.718 0.723 0.828 0.965 0.979 0.982 0.979

Panel B. Heterogeneous Effects

1{T} × Post 0.087 0.109 0.441** 0.181*** 0.142* 0.002 0.125

(0.500) (0.396) (0.017) (0.006) (0.073) (0.974) (0.135)

Pol × Post 0.253** 0.254** -0.024 -0.011 -0.300*** -0.242*** -0.311***

(0.045) (0.047) (0.873) (0.719) (0.000) (0.000) (0.000)

1{T} × Post × Pol -0.297** -0.288* -0.554** -0.024 -0.067 -0.071 -0.089

(0.045) (0.053) (0.014) (0.562) (0.559) (0.356) (0.505)

β̂1 + β̂3 -0.210 -0.179 -0.113 0.157 0.075 -0.069 0.036

City-Sector FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 2,089 2,089 2,563 2,640 2,376 2,640 2,376

R-squared 0.798 0.806 0.792 0.967 0.961 0.970 0.948

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the city level. β̂1

represent 1{T} × Post and β̂3 represent 1{T} × Post × Pol. β̂1 + β̂3 reports the combined effect on polluting sectors.
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Table 8: Results for Firms Switching Products

(1) (2) (3) (4)
VARIABLES Switch ln(Output) ln(Emp) ln(Cap)

1{T} × Post 0.003**
(0.030)

1{T} × Post × Switch 0.067*** 0.011 0.104***
(0.000) (0.520) (0.000)

Firm FE Y Y Y Y
Year FE Y Y Y Y
Observations 565,226 564,951 565,226 565,226
R-squared 0.192 0.866 0.897 0.919

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Standard errors clustered at the city level.
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Table 9: Heterogeneous Effects by Firm Type and Region

Non-switching Firms SOEs Non-SOEs

(1) (2) (3) (4) (5) (6)

ln(Nfirms) ln(Output) ln(Nfirms) ln(Output) ln(Nfirms) ln(Output)

Panel A. Treated Cities

1{T} × Post 0.185*** 0.131* 0.307*** 0.495*** 0.023 0.020

(0.006) (0.066) (0.000) (0.000) (0.751) (0.818)

Pol × Post 0.032 -0.148** 0.245*** -0.224* -0.047 0.009

(0.295) (0.019) (0.000) (0.053) (0.253) (0.913)

1{T} × Post × Pol -0.017 -0.002 -0.195*** -0.288 0.012 0.072

(0.679) (0.982) (0.000) (0.109) (0.823) (0.522)

β̂1 + β̂3 0.168 0.129 0.112 0.207 0.035 0.092

Observations 2,640 2,376 2,064 2,580 2,520 2,268

R-squared 0.966 0.970 0.950 0.911 0.960 0.953

Panel B. Neighboring Cities

1{N} × Post 0.063 0.095 0.052 0.050 0.113* 0.200**

(0.320) (0.216) (0.362) (0.597) (0.089) (0.024)

Pol × Post -0.076** -0.295*** 0.242*** -0.188* -0.054 0.038

(0.011) (0.000) (0.000) (0.062) (0.168) (0.625)

1{N} × Post × Pol 0.058 0.112 -0.049 0.176 -0.027 -0.001

(0.144) (0.180) (0.332) (0.137) (0.611) (0.989)

β̂1 + β̂3 0.121 0.207 0.003 0.226 0.086 0.199

Observations 3,510 3,510 3,040 3,800 3,760 3,384

R-squared 0.948 0.952 0.930 0.890 0.943 0.942

City-Sector FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Notes: P-values in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors clustered at
the city level. β̂1 + β̂3 reports the combined effect on polluting sectors.
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Table 10: Effects on Exit, Entry, and Net Entry Rates

(1) (2) (3)

Exit Rate Entry Rate Net Entry

Panel A. Treated Cities

1{T} × Post -0.027** -0.007 0.021

(0.023) (0.568) (0.194)

Pol × Post -0.013 -0.012 0.002

(0.216) (0.282) (0.897)

1{T} × Post × Pol 0.026** -0.002 -0.028*

(0.039) (0.869) (0.100)

β̂1 + β̂3 -0.001 -0.009 -0.009

Observations 2,112 2,376 2,112

R2 0.330 0.642 0.510

City-Sector FE Yes Yes Yes

Year FE Yes Yes Yes

Panel B. Neighboring Cities

1{N} × Post -0.017 -0.013 0.004

(0.186) (0.285) (0.804)

Pol × Post -0.014 -0.014 0.001

(0.180) (0.203) (0.949)

1{N} × Post × Pol 0.012 0.009 -0.002

(0.339) (0.469) (0.893)

β̂1 + β̂3 -0.005 -0.004 0.002

Observations 3,120 3,510 3,120

R2 0.306 0.626 0.500

City-Sector FE Yes Yes Yes

Year FE Yes Yes Yes

Notes: P-values in parentheses. *** p<0.01, ** p<0.05,
* p<0.1. Standard errors are clustered at the city level.
β̂1 + β̂3 reports the combined treatment effect for polluting
sectors.
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Figures

Figure 1: Map of KCAPC Cities

Figure 2: Merge results for ASIF and AESPF

(a) Matched Firms (bar chart) (b) Match Rates (ASIF vs AESPF)

Note: Panel (a) shows the total number of successfully matched firms each year from ASIF
and AESPF datasets. Panel (b) compares match rates over time between ASIF and AESPF
using line graphs.
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Figure 3: Distribution of Key Stats Between Datasets

(a) Emission Intensity (b) Output (b) Capital Labor Ratio

Note: Panels (a) and (b) compare the firm-level distribution of SO2 intensity / output between
the merged and AESPF datasets. Panel (c) compares the firm-level real capital stock /
employment between the merged and ASIF datasets.

Figure 4: Trends in Sectoral SO2 Generation Intensity by Decile Bins (1998–2007)
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Figure 5: Map of Cities by Treatment Status
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Figure 6: Pre-trend for Aggregate Effects in Neighbor Cities

(a) SO2 Emission Intensity (b) SO2 Generation Intensity (c) Total SO2 Emission

(d) Nfirms (e) Output (f) Employment

(g) Capital Stock

Note: One pre-trend year is missing for some variables (output and capital stocks) because that year receives
zero weight in the SDID regression.
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Figure 7: Pre-trend for Aggregate Effects in Treated Cities

(a) SO2 Emission Intensity (b) SO2 Generation Intensity (c) Total SO2 Emission

(d) Nfirms (e) Output (f) Employment

(g) Capital Stock

Note: One pre-trend year is missing for some variables (output and capital stocks) because that year receives
zero weight in the SDID regression.
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Figure 8: Change in zLQ after 2002 for Treated and Neigbor Cities

Note: This figure plots point estimates and their confidence intervals (CIs) for the standardized location
quotient index of polluting sectors across economic outcomes. The bars represent 90% CIs, while the spikes
represent 95% CIs.
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APPENDIX

A Calculate City and YearWeight using Synthetic Difference-

in-Difference

As mentioned in the Section 2, the central government selects treated cities based on their

overall development and pollution level. Therefore, using raw DID is unlikely to obtain

unbiased results. To mitigate this concern, I use a synthetic difference-in-difference approach

proposed by Arkhangelsky et al. (2021). In my setting, this method calculates an optimal

city and year weight to construct a counterfactual control group whose time trend before

the policy implementation is parallel to the treated cities. I manually calculate city and

year weights in the same vein of what Arkhangelsky et al. (2021) did, following Chen et al.

(2024).

To construct city and year weight for Equation (1), I estimate the following SDID model:

(β̂sdid, µ̂, σ̂, γ̂, τ̂) = arg min
τ,µ,σ,γ,β

{
N∑
c=1

T∑
t=1

(Yct − µ− σc − τt −Xctγ −Wctβ)
2 ω̂sdid

c λ̂sdid
t

}
(7)

Where Wct = 1{Tc} × Postt, which is the treatment indicator. To account for the

heterogeneous growth rate of different cities, I control for total city population and firm

average wage (both in log form) in Xct. Additionally, to account for different trade shocks,

I also control for the log of total export value.

As for Equation (2), a straightforward way to deal with this is to apply weight from

Equation (1) directly into (2). However, the parallel trend assumption is violated using

this approach. An explanation for this is that the calculated weight only matches parallel

pre-trend at the whole city level, whereas those cities might have a heterogeneous pattern

for industrial structure, which results in the parallel trend assumption being violated in the

triple-difference setting.

As noted in Olden and Møen (2022), the triple-difference estimator can be computed

as the difference between two difference-in-differences estimators, but it requires only one

parallel trends assumption for a causal interpretation. This is because any common bias in

the two DID estimators cancels out. In my setting, where I estimate heterogeneous trends

between polluting and less polluting sectors, this implies that the counterfactual control

group must be constructed such that the relative shares of polluting and less polluting sectors

are similar to those in the treated cities, ensuring any bias affects both groups equally.
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Given the above considerations, I calculate the weight from another SDID specification

to address this issue. Particularly, I estimate the following SDID model:

(β̂sdid, µ̂, σ̂, γ̂, τ̂) = arg min
τ,µ,σ,γ,β

{
N∑
c=1

T∑
t=1

(
ln(

Y 1ct
Y 0ct

)− µ− σc − τt −Xctγ −Wctβ

)2

ω̂sdid
c λ̂sdid

t

}
(8)

The only difference between this model and Equation (7) lies in the outcome variable.

Y 1ct and Y 0ct refer to the outcomes from the top quintile polluting sectors and the remaining

aggregate sectors, respectively. The calculated weight ensures that, prior to policy imple-

mentation, the control group has a parallel trend in terms of industrial structure (ratio) in

polluting and less polluting sectors with the treated cities.

The weights used in the formal analysis have the following form:

Weightct = CityWeightc × Y earWeightt (9)

A different weight is calculated for each outcome variable of interest. At last, the same

procedure is applied when analyzing the neighboring cities.
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B Additional Tables

Table B1: Match Rate by Treatment Group

(1)
Match Rate

1{T} -0.019
(0.247)

1{N} 0.005
(0.739)

Sector FE Y
Year FE Y
Observations 5,752
R-squared 0.321

Table B2: Effect on COD Intensity

(1) (2)

Treated Neighbor

1{T} × Post 0.029 0.090

(0.878) (0.545)

Pol × Post -0.061 -0.060

(0.683) (0.682)

1{T} × Post × Pol -0.102 -0.172

(0.626) (0.343)

β̂1 + β̂3 -0.073 -0.082

Observations 2,257 3,323

R-squared 0.722 0.671

City-Sector FE Yes Yes

Year FE Yes Yes

Notes: P-values in parentheses. Standard
errors clustered at the city level. β̂1 + β̂3

reports the combined effect on polluting
sectors.
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Table B3: Effects on Neighboring Cities: Controlling for City-Sector and Sector-Year FEs

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2etot) ln(SO2e/Out) ln(SO2g/Out) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

1{N} × Post 0.158 0.013 0.003 0.065 0.066 -0.035 -0.018

(0.278) (0.907) (0.978) (0.303) (0.381) (0.542) (0.783)

1{N} × Post × Pol -0.006 -0.051 -0.055 0.038 0.138* 0.079 0.240***

(0.967) (0.684) (0.667) (0.335) (0.093) (0.113) (0.001)

β̂1 + β̂3 0.152 -0.038 -0.052 0.103 0.204 0.044 0.222

City-Sector FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 3,778 3,090 3,091 3,900 3,510 3,900 3,510

R-squared 0.799 0.798 0.807 0.949 0.952 0.960 0.940

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. β̂1 + β̂3 reports the combined effect on polluting
sectors.

Table B4: Effects on Treated Cities: Controlling for City-Sector and Sector-Year FEs

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2etot) ln(SO2e/Out) ln(SO2g/Out) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

1{T} × Post 0.442** 0.086 0.108 0.181*** 0.142* 0.002 0.125

(0.017) (0.502) (0.398) (0.006) (0.074) (0.974) (0.136)

1{T} × Post × Pol -0.556** -0.297** -0.288* -0.024 -0.067 -0.071 -0.089

(0.014) (0.046) (0.053) (0.563) (0.559) (0.357) (0.506)

β̂1 + β̂3 -0.114 -0.210 -0.180 0.157 0.075 -0.069 0.036

City-Sector FE Y Y Y Y Y Y Y

Sector-Year FE Y Y Y Y Y Y Y

Observations 2,563 2,089 2,089 2,640 2,376 2,640 2,376

R-squared 0.795 0.798 0.806 0.967 0.962 0.972 0.950

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the city level. β̂1+ β̂3

reports the combined effect on polluting sectors.
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Table B5: Effects on Neighboring Cities: Without SDID Weight

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2etot) ln(SO2e/Out) ln(SO2g/Out) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

1{N} × Post 0.037 0.003 0.018 0.042 0.036 -0.072 -0.024

(0.800) (0.984) (0.888) (0.532) (0.672) (0.304) (0.757)

Pol × Post -0.042 0.332*** 0.347*** -0.019 -0.324*** -0.302*** -0.324***

(0.747) (0.007) (0.005) (0.564) (0.000) (0.000) (0.000)

1{N} × Post × Pol 0.100 -0.101 -0.125 0.064 0.201** 0.149** 0.298***

(0.521) (0.474) (0.370) (0.132) (0.032) (0.024) (0.001)

β̂1 + β̂3 0.137 -0.098 -0.107 0.106 0.237 0.077 0.274

City-Sector FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 3,778 3,778 3,778 3,900 3,900 3,900 3,900

R-squared 0.790 0.776 0.787 0.939 0.944 0.945 0.918

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. β̂1 + β̂3 reports the combined effect on polluting
sectors.

Table B6: Effects on Treated Cities: Without SDID Weight

SO2 Outcomes Economic Outcomes

(1) (2) (3) (4) (5) (6) (7)

ln(SO2etot) ln(SO2e/Out) ln(SO2g/Out) ln(Nfirms) ln(Output) ln(Emp) ln(Cap)

1{T} × Post 0.313 0.032 0.083 0.167** 0.124 -0.027 0.131

(0.103) (0.803) (0.520) (0.015) (0.137) (0.675) (0.133)

Pol × Post -0.195 0.305** 0.317** -0.020 -0.352*** -0.308*** -0.346***

(0.222) (0.015) (0.012) (0.536) (0.000) (0.000) (0.000)

1{T} × Post × Pol -0.360 -0.262* -0.275* -0.005 -0.013 -0.006 -0.045

(0.127) (0.081) (0.065) (0.916) (0.909) (0.945) (0.740)

β̂1 + β̂3 -0.047 -0.230 -0.192 0.162 0.111 -0.033 0.086

City-Sector FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

Observations 2,563 2,563 2,563 2,640 2,640 2,640 2,640

R-squared 0.772 0.778 0.790 0.964 0.955 0.963 0.936

Notes: P-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the city level. β̂1 + β̂3

reports the combined effect on polluting sectors.
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Table B7: Annual Percentage of SOEs by Region

Firms (%) Output (%) SO2 Emission (%)

Treated Neighbor Control Treated Neighbor Control Treated Neighbor Control

1998 32.3 43.9 37.9 51.9 50.8 39.0 76.98 78.68 73.03

1999 31.2 42.3 35.9 51.2 49.8 36.9 76.34 77.97 73.42

2000 27.8 37.8 30.0 50.6 49.6 34.5 74.96 77.42 68.33

2001 23.6 31.2 24.1 47.7 45.8 31.2 70.55 68.33 58.21

2002 20.1 25.4 20.1 44.0 41.4 27.9 65.84 62.62 65.08

2003 16.0 19.8 15.8 41.5 38.6 25.0 63.60 60.49 60.17

2004 10.5 12.8 10.4 36.5 34.5 23.4 50.58 51.79 54.38

2005 9.7 10.5 8.6 34.8 32.3 21.2 57.33 49.51 39.05

2006 8.2 8.4 7.1 31.9 29.4 19.6 54.84 48.92 41.66

2007 6.7 6.5 5.5 30.4 26.7 18.2 55.62 44.37 42.79

Table B8: Annual Percentage of SOEs by Region (Polluting Sectors Only)

Firms (%) Output (%) SO2 Emission (%)

Treated Neighbor Control Treated Neighbor Control Treated Neighbor Control

1998 34.4 47.1 47.0 62.5 66.4 63.2 78.4 80.5 73.9

1999 33.2 45.9 45.9 61.4 65.0 60.3 76.2 79.9 71.9

2000 30.3 42.2 41.2 59.8 63.8 59.1 73.8 78.3 66.5

2001 26.6 36.8 34.7 56.2 61.4 53.7 69.5 68.3 58.5

2002 23.1 31.7 31.4 52.7 54.7 50.1 68.2 62.4 64.9

2003 19.6 25.6 25.9 49.3 50.8 44.4 60.6 58.3 57.2

2004 12.6 17.0 19.3 38.5 42.9 38.2 41.6 51.4 54.1

2005 12.2 14.7 16.5 36.7 40.6 37.4 43.2 49.8 35.8

2006 10.4 12.1 14.0 33.4 39.1 35.4 43.2 48.5 38.1

2007 9.0 10.3 11.7 32.5 36.1 32.3 40.6 43.4 42.5

Notes: Each cell reports the percentage of state-owned enterprises (SOEs) in terms of number of firms,
total output, or SO2 emissions for polluting sectors only. Values are percentages rounded to one decimal
place.
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Table B9: Effect on Capital Stock by State-Ownership and Region

Treated Cities Neighbor Cities

(1) (2) (3) (4)

SOEs Non-Soes SOEs Non-Soes

1{T} × Post 0.406*** 0.054 -0.041 0.183**

(0.000) (0.485) (0.648) (0.032)

Pol × Post -0.193* 0.062 -0.149* 0.085

(0.066) (0.463) (0.090) (0.319)

1{T} × Post × Pol -0.187 -0.077 0.289*** -0.017

(0.315) (0.530) (0.007) (0.872)

β̂1 + β̂3 0.219 -0.023 0.248 0.166

Observations 2,322 2,268 3,420 3,384

R-squared 0.900 0.940 0.883 0.921

City-Sector FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Notes: P-values in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1. Standard errors clustered at the city level. β̂1 + β̂3

reports the combined effect on polluting sectors.
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C Additional Figures

Figure C1: Distribution of Key Stats by Treatment Groups

(a) Emission Intensity (by Region) (b) Output (by Region)

(c) K/L (by Region) (d) K/L (by Sector)

Note: This panel compares key stats by treatment group. The results show that different groups have a
similar distribution. Additionally, panel (d) shows that polluting and less polluting sectors have a similar
pattern as well.
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Figure C2: Pre-trend for Aggregate Effects in Treated Cities (Raw DID)

(a) SO2 Emission Intensity (b) SO2 Generation Intensity (c) Total SO2 Emission

(d) Nfirms (e) Output (f) Employment

(g) Capital Stock

Note: This is the event study plot for equation (1) without adding SDID weights.

62



Figure C3: Distribution of β̂3 for Randomly Treated Cities

(a) Treated Cities

(b) Neighboring Cities

Note: Blue area represents density of distribution for the β̂3, red circle represents the mean across all 250
replications, and white box represents range within one standard-deviation of the distribution. Figure a is
for the distributions of β̂3 for treated cities, while Figure b is for neighboring cities.
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Figure C4: Distribution of β̂3 for Random Polluting Sectors

(a) Treated Cities

(b) Neighboring Cities

Note: Blue area represents density of distribution for the β̂3, red circle represents the mean across all 250
replications, and white box represents range within one standard-deviation of the distribution. Figure a is
for the distributions of β̂3 for treated cities, while Figure b is for neighboring cities.
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Figure C5: Distribution of β̂3 for Leave-One-Out Cities

(a) Treated Cities

(b) Neighboring Cities

Note: Blue area represents density of distribution for the β̂3, red circle represents the mean across all
leave-one-out replications, and white box represents range within one standard-deviation of the distribution.
Figure a is for the distributions of β̂3 for treated cities, while Figure b is for neighboring cities.
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Figure C6: Distribution of β̂3 for Leave-One-Out Sectors

(a) Treated Cities

(b) Neighboring Cities

Note: Blue area represents density of distribution for the β̂3, red circle represents the mean across all
leave-one-out replications, and white box represents range within one standard-deviation of the distribution.
Figure a is for the distributions of β̂3 for treated cities, while Figure b is for neighboring cities. Notably, the
one replication for the total SO2 emission in the treated city (with β̂3 around -0.3) is due to the drop of the
steelmaking sector.
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Figure C7: Sectoral Distribution of Switching Firms

Notes: The pie chart shows the share of two-digit sectors among all switching firms; for example, about 21%
of switching firms are in chemical sectors.

Figure C8: Share of Switching Firms by Region

Notes: This figure plots the share of key outcomes (number of firms, gross value output, as well as SO2

emission) by treatment status.
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Figure C9: Share of Non-Privatized SOEs in 2007 by Region

Notes: This figure plots the share of key outcomes (number of firms, gross value output, as well as SO2

emission) by treatment status.
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